A paper about machine learning reproducibility and the problems that arise
Find a file
Joshua Niemelä 1d4b8b911c Update README.md
2025-01-12 21:22:25 +01:00
.github/workflows Add typst report and CI 2024-12-29 12:31:28 +01:00
.idea Improve TOGL using UnionFind 2024-12-29 12:31:28 +01:00
benchmarking/topognn Improve TOGL using UnionFind 2024-12-29 12:31:28 +01:00
five_nodes_regression Rename five nodes regression folder 2024-12-30 12:28:15 +01:00
graph_benchmark Update name 2025-01-02 18:39:52 +01:00
QM9 Add QM9 stuff 2024-12-29 12:30:39 +01:00
QM9_benchmark Format and linting 2024-12-29 12:31:28 +01:00
report Sync report 2025-01-12 21:22:07 +01:00
three_nodes_classification Add three nodes classification output layer mlp plotting script 2024-12-30 12:28:15 +01:00
three_nodes_regression Add .gitignore 2024-12-29 12:31:28 +01:00
tree_neighbours_match Add MLP experiment 2025-01-03 13:46:36 +01:00
.envrc Deduplicate dev environments 2024-12-29 12:31:28 +01:00
.gitignore Generate new dataset for each run 2024-12-29 12:31:28 +01:00
flake.lock Code 2024-12-29 12:31:28 +01:00
flake.nix Add typst report and CI 2024-12-29 12:31:28 +01:00
LICENSE Update README.md 2025-01-12 21:22:25 +01:00
poetry.lock Code 2024-12-29 12:31:28 +01:00
pyproject.toml Remove networkx 2024-12-30 12:28:15 +01:00
README.md Update README.md 2025-01-12 21:22:25 +01:00

Bottlenecks within Graph Neural networks: A Study of Challenges and Mitigations

This project will explore the oversquashing problem in Graph Neural Networks (GNNs) and how it affects the ability for the model to learn long-range dependencies between nodes. The project will also explore the use of topological information in the form of the dataset's graph structure to improve the model's ability to learn long-range dependencies.

Supervised by: Raghavendra Selvan